China supplier Sigle Phase Brushed DC Worm Gear Electric Gearbox Electrical Motor vacuum pump electric

Product Description

 Good starting performance, large start torque, compact size. Worm gear reducer is optional. Can develop motor and worm gear box per customer requirements.

Type Series Frame Voltage Current Power RPM
Brushed DC Motor PP-8532 58mm 12V 2.86A 35W 8000RPM
Brushed DC Motor 52ZYT 48mm 120V 0.8A 60W 5800RPM
Worm Gear DC Motor 63ZY-CJ002 58mm 24/48/110/220V 5.6/2.8/1.2/0.6A 65W 120RPM

 

HangZhou HangZhou Meihe Motor Co., Ltd. Was established in 2009, is a joint-stock limited company. It is located in HangZhou, ZheJiang Province on the shore of the beautiful Xihu (West Lake) Dis. Lake. At present, the company has more than 100 employees, 7 R & D engineers. Mainly engaged in the development, production and sales of AC motor, DC motor and blower. The company covers an area of 2500 square CHINAMFG with production and testing equipment more than 50 sets. Products are sold to both domestic and foreign markets (Japan, the United States). Its product quality and service has been well evaluated by domestic and foreign customers.

In order to strictly control product quality and meet customer needs, the company has obtained GB/T19001-2016 idt and ISO9001: 2015 quality management system certification . The company pursues the culture of “enterprising, realistic, rigorous and united”, regards quality as life, adheres to technological innovation, and won the certificate of “ZheJiang High-tech Enterprise” and the certificate of “HangZhou Science and Technology Research and Development Institution” in 2571. HangZhou HangZhou Meihe Motor Co., Ltd. Will always adhere to the company’s quality policy of “quality first, customer first, continuous improvement, sustainable management” service customers, and strive to make the company steadily bigger and stronger!

Our company FAQ for you

(1) Q: What kind motors you can provide?
A:We mainly provide AC Motor, DC Brushed Motor, Gear Motor, Blower.,

(2) Q: Is it possible to visit your factory
A: Sure. But please kindly keep us posted a few days in advance. We need to check our
schedule to see if we are available then.

(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will
be difficult for us to provide, because all of our motors are custom made and no stock
available if there is no further needs. If just sample testing before the official order and
our MOQ, price and other terms are acceptable, we’d love to provide samples.

(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Function: Driving
Casing Protection: Protection Type
Number of Poles: 12
Structure and Working Principle: Brush
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

3 phase motor

What is a 3-phase motor and how does it work?

A 3-phase motor is a type of electric motor that operates on a three-phase power supply. It is widely used in various industrial and commercial applications due to its efficiency, reliability, and ability to provide high torque output. Here’s a detailed explanation of what a 3-phase motor is and how it works:

A 3-phase motor consists of three windings, typically placed 120 degrees apart around the motor’s stator. These windings are energized by a balanced three-phase power supply, which generates a rotating magnetic field within the motor. The rotating magnetic field interacts with the motor’s rotor, causing it to rotate and produce mechanical power.

Here’s a step-by-step explanation of how a 3-phase motor works:

  1. Power Supply: A 3-phase motor requires a three-phase power supply, which typically consists of three alternating current (AC) voltage waveforms that are 120 degrees out of phase with each other. The power supply is connected to the motor’s three windings.
  2. Stator Windings: The stator windings are coils of wire that are wound around the motor’s stator. Each winding is connected to a different phase of the power supply. When the power supply is energized, alternating current flows through each winding, creating a magnetic field around the stator.
  3. Rotating Magnetic Field: The three-phase current flowing through the stator windings creates a rotating magnetic field. The rotating magnetic field is produced because the three phases are out of phase with each other by 120 degrees. This rotating magnetic field is responsible for the motor’s operation.
  4. Rotor: The rotor is the rotating part of the motor. It is typically made of a series of conductive bars or laminated iron cores. The rotor is placed within the rotating magnetic field created by the stator windings.
  5. Induction or Synchronous Operation: Depending on the design of the motor, it can operate as an induction motor or a synchronous motor.
    • Induction Motor: In an induction motor, the rotating magnetic field induces currents in the rotor bars through electromagnetic induction. These induced currents create a magnetic field in the rotor that interacts with the stator’s rotating magnetic field, causing the rotor to rotate. The speed at which the rotor rotates is slightly slower than the speed of the rotating magnetic field, creating a slip. The slip allows the motor to produce torque and overcome inertia or mechanical load.
  6. Mechanical Power Output: As the rotor rotates within the rotating magnetic field, it generates torque. The torque produced by the motor can be used to drive mechanical loads, such as pumps, fans, compressors, conveyors, or machinery. The motor’s speed and torque output can be controlled by adjusting the frequency or voltage of the three-phase power supply, or by implementing control strategies within the motor’s control system.

Overall, a 3-phase motor is a versatile and efficient motor that operates on a three-phase power supply. It works by creating a rotating magnetic field in the motor’s stator through energized windings. This rotating magnetic field interacts with the rotor, causing it to rotate and generate mechanical power. Whether it operates as an induction motor or a synchronous motor, the 3-phase motor is widely used in various industrial applications due to its reliable and high-performance characteristics.

3 phase motor

What factors should be considered when selecting a 3-phase motor for an application?

When selecting a 3-phase motor for a specific application, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed explanation of the key factors to consider:

  • Power Requirements: The power requirements of the application should be carefully evaluated. Determine the required horsepower (HP) or kilowatt (kW) rating of the motor based on the load characteristics, such as the torque and speed requirements. Consider both the continuous power requirements and any intermittent or peak power demands that the motor may experience during operation.
  • Voltage and Frequency: Verify the available voltage and frequency of the power supply in the application. Ensure that the motor’s voltage and frequency ratings match the power supply to ensure compatibility and safe operation. Common voltage ratings for 3-phase motors include 208V, 230V, 460V, and 575V, while frequencies are typically 50Hz or 60Hz.
  • Motor Speed: Determine the required speed of the motor for the application. Depending on the specific requirements, you may need a motor with a fixed speed, multiple speed options, or variable speed capabilities. Consider the motor’s synchronous speed, which is determined by the number of poles and the power supply frequency, and ensure it aligns with the desired operating speed.
  • Motor Enclosure: The motor enclosure should be selected based on the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, corrosive substances, and the presence of flammable or explosive materials. Common motor enclosures include open drip-proof (ODP), totally enclosed fan-cooled (TEFC), and explosion-proof enclosures.
  • Efficiency: Energy efficiency is an important consideration to minimize operating costs and environmental impact. Look for motors that meet or exceed applicable efficiency standards, such as the NEMA Premium efficiency standards in the United States or the IE efficiency classes defined by the International Electrotechnical Commission (IEC).
  • Motor Size and Mounting: Consider the physical size and mounting requirements of the motor, ensuring it fits within the available space and can be securely mounted. Check the motor’s frame size, which indicates the physical dimensions and mounting compatibility, such as NEMA frame sizes in the United States or IEC frame sizes internationally.
  • Starting Method: Evaluate the starting requirements of the application. Depending on the load characteristics and the power supply capacity, you may need a motor with specific starting methods, such as direct-on-line (DOL) starting, reduced voltage starting (e.g., star-delta or autotransformer starting), or electronic soft starters. Consider the starting torque and current requirements to ensure successful motor startup.
  • Overload Protection: Determine the type of overload protection required for the motor. Overload protection devices, such as thermal overload relays or electronic motor protection relays, help prevent motor damage due to excessive heat or current overload. Select an appropriate overload protection device based on the motor’s power rating and the specific application requirements.
  • Reliability and Serviceability: Consider the reliability and serviceability aspects of the motor. Look for motors from reputable manufacturers with a track record of producing reliable products. Evaluate the availability of spare parts, technical support, and service centers for maintenance and repairs. Additionally, consider factors such as motor lifespan, bearing design, and ease of access for maintenance tasks.
  • Compliance and Certifications: Ensure that the selected motor complies with relevant industry standards and certifications, such as NEMA, IEC, UL (Underwriters Laboratories), CSA (Canadian Standards Association), or specific industry requirements. Compliance with these standards ensures that the motor meets safety, performance, and quality standards.

Considering these factors when selecting a 3-phase motor helps ensure that the motor is well-suited for the application, delivers optimal performance, and operates reliably and efficiently over its lifespan.

3 phase motor

Can 3-phase motors be integrated with advanced control systems and automation?

Yes, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies. Here’s a detailed explanation of their compatibility and integration capabilities:

  • Variable Frequency Drives (VFDs):
    • 3-phase motors can be coupled with VFDs, which are advanced control devices that provide precise control over motor speed and torque. VFDs convert the incoming AC power into DC and then generate variable voltage and frequency outputs to the motor. This allows for smooth and accurate speed regulation, making 3-phase motors suitable for applications requiring speed control, such as conveyor systems, pumps, and fans.
    • VFDs can be integrated into automation systems through various communication protocols such as Modbus, Profibus, or Ethernet. This enables real-time monitoring, control, and coordination of motor performance within the overall automation network.
  • Programmable Logic Controllers (PLCs):
    • 3-phase motors can be integrated with PLCs, which are industrial digital computers used for automation and control purposes. PLCs can be programmed to monitor and control the operation of 3-phase motors based on specific conditions, inputs, and logic sequences.
    • PLCs can receive feedback signals from sensors or other devices to monitor motor performance, temperature, vibration, and other relevant parameters. Based on this feedback, the PLC can initiate control actions or activate protective functions to ensure optimal motor operation.
    • Integration with PLCs allows for centralized control, data logging, and the ability to interface with other automation devices and systems. This facilitates seamless integration of 3-phase motors into larger automated processes or production lines.
  • Industrial Communication Protocols:
    • 3-phase motors can be integrated into advanced control systems using various industrial communication protocols, such as Modbus, Profibus, DeviceNet, EtherCAT, or Profinet. These protocols enable data exchange and communication between the motor and other devices or systems within the automation network.
    • By utilizing these communication protocols, 3-phase motors can provide real-time feedback on parameters such as motor speed, torque, temperature, and operating conditions. This data can be used for condition monitoring, predictive maintenance, and optimization of motor performance.
    • Integration with industrial communication protocols allows for seamless connectivity, interoperability, and coordination between 3-phase motors and other automation components, such as sensors, actuators, HMIs (Human-Machine Interfaces), and supervisory control systems.
  • Remote Monitoring and Control:
    • The integration of 3-phase motors with advanced control systems and automation technologies enables remote monitoring and control capabilities. Motor parameters and performance data can be accessed and monitored from a central control room or through web-based interfaces.
    • Remote monitoring allows for real-time status updates, fault diagnostics, and performance optimization of 3-phase motors. It enables proactive maintenance and troubleshooting, leading to increased uptime and improved efficiency.
    • Advanced control systems and automation technologies also facilitate remote control of 3-phase motors, allowing operators or system administrators to adjust motor settings, initiate start/stop commands, or modify control parameters from a centralized location.

Overall, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies, such as VFDs, PLCs, industrial communication protocols, and remote monitoring/control capabilities. This integration enables precise control, real-time monitoring, and coordination of motor performance within automated processes and systems, leading to enhanced efficiency, productivity, and flexibility in industrial applications.

China supplier Sigle Phase Brushed DC Worm Gear Electric Gearbox Electrical Motor   vacuum pump electricChina supplier Sigle Phase Brushed DC Worm Gear Electric Gearbox Electrical Motor   vacuum pump electric
editor by CX 2024-05-14